Solutions to graded problems in Homework 5

Peyam Tabrizian

Friday, October 7th, 2011

4.5.3

(a)

$$
\begin{aligned}
W & =\left\{\left[\begin{array}{c}
2 c \\
a-b \\
b-3 c \\
a+2 b
\end{array}\right]: a, b, c \in \mathbb{R}\right\} \\
& \left.=\left\{\begin{array}{l}
0 \\
a \\
0 \\
a
\end{array}\right]+\left[\begin{array}{c}
0 \\
-b \\
b \\
2 b
\end{array}\right]+\left[\begin{array}{c}
2 c \\
0 \\
3 c \\
0
\end{array}\right]: a, b, c \in \mathbb{R}\right\} \\
& =\left\{a\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]+b\left[\begin{array}{c}
0 \\
-1 \\
1 \\
2
\end{array}\right]+c\left[\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right]: a, b, c \in \mathbb{R}\right\} \\
& =\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

It is easy to check that the three vectors above are linearly independent, hence a basis for W is:

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
3 \\
0
\end{array}\right]\right\}
$$

(b) It follows that $\operatorname{dim}(W)=3$ (the number of vectors in \mathcal{B})
4.6.9

We know that $\operatorname{dim}(N u l(A))+\operatorname{Rank}(A)=6$.
However, we are given that $\operatorname{dim}(\operatorname{Nul}(A))=4$, hence: $\operatorname{Rank}(A)=6-4=2$.
But, $\operatorname{Rank}(A)=\operatorname{dim}(\operatorname{Col}(A))($ by definition $)$, hence $\operatorname{dim}(\operatorname{Col}(A))=2$
4.7.1
(a)

$$
\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}=\left[\begin{array}{ll}
{\left[\mathbf{b}_{\mathbf{1}}\right]_{\mathcal{C}}} & {\left[\mathbf{b}_{\mathbf{2}}\right]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{cc}
6 & 9 \\
-2 & -4
\end{array}\right]
$$

(b)

$$
[\mathbf{x}]_{\mathcal{C}}=\mathcal{C} \stackrel{P}{\leftarrow} \mathcal{B}[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{cc}
6 & 9 \\
-2 & -4
\end{array}\right]\left[\begin{array}{c}
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2
\end{array}\right]
$$

